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Making accurate predictions about what may happen in the environment requires analogies between percep-
tual input and associations in memory. These elements of predictions are based on cortical representations,
but little is known about how these processes can be enhanced by experience and training. On the other
hand, studies on perceptual expertise have revealed that the acquisition of expertise leads to strengthened
associative processing among features or objects, suggesting that predictions and expertise may be tightly
connected. Here we review the behavioral and neural findings regarding the mechanisms involving predic-
tion and expert processing, and highlight important possible overlaps between them. Future investigation
should examine the relations among perception, memory and prediction skills as a function of expertise.
The knowledge gained by this line of research will have implications for visual cognition research, and will
advance our understanding of how the human brain can improve its ability to predict by learning from
experience.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

When walking on the street, we are not surprised to see cars,
parking meters, or traffic lights. If we catch a glimpse of something
that appears on the sidewalk and quickly disappears into the bushes,
we may think that it could be a bird, a squirrel, or a cat, depending on
its size and shape. However, we would be baffled if we instead saw
something unpredicted, such as a goat or an anchor, on the street, be-
cause it would be completely out of context. While external informa-
tion from the world is continuously extracted and processed by
various sensory modalities, the human brain readily generates top–
down predictions1 based on associations in memory formed from
previous experience to make sense of and interact with the environ-
ment (Bar, 2007). Various predictions may be formed continuously.
For instance, when we see a parking meter, we predict that it is likely
a car next to it. Or we predict that a blurry impression is a harmless
squirrel. Recent work on visual prediction has suggested that predic-
tions are formed rapidly and draw on associative connections stored
in long-term memory (e.g., Bar, 2004, 2009; Gilbert and Wilson,
2007; Schacter et al., 2007, 2008).

Strong associative activations and fast processing speed are also
characteristics of expert processing (e.g., Chase and Ericsson, 1981;
edical Imaging Massachusetts
th Street, Room 2301, Charles-
; fax: +1 617 726 7422.
Cheung).
used interchangeably in the lit-
ved in visual recognition. Here,
ual facilitation that is based on
ions and analogies.
G
to

e
w
a

rights reserved.
Freyhof et al., 1992; Richler et al., 2009). For instance, while most
people may recognize a fast approaching car merely as a ‘silver car’,
a car expert may recognize it instantaneously as the newest model
of Jaguar XF, know what engine it may have, and can distinguish be-
tween this and other comparable models. In this review, we highlight
the possible relations between the processes responsible for predic-
tion and the processes involved in expert processing. We focus our
discussion on recent behavioral and imaging findings on visual pre-
diction and on visual expertise, as theories in these two areas have
been elaborated and studied especially in the last decade (e.g., Bar,
2003, 2004; Gauthier et al., 2000a; Wong et al., 2009a). Merging the
findings from these two literatures offers new insights on the role
of associative processing in a variety of cognitive processes that are
central to our mental lives, such as recognition, learning, memory
and prediction.

2. Generating visual predictions based on analogies and associations

Making rapid and accurate predictions is beneficial in many situa-
tions and can facilitate perception and action. To do so, one needs to
acquire knowledge about various attributes and relations of objects,
people, and events in the world. Such knowledge, stored in memory,
constitutes the basis of recognition and prediction for both familiar
and unfamiliar instances (e.g., recognizing your own cat vs. a stray
cat). While interacting with the environment, the human brain not
only makes use of incoming perceptual information, but also com-
pares this input with representations in memory, and generates spe-
cific and testable predictions (e.g., ‘is this my phone?’). To understand
how the brain generates proactive predictions to guide cognition and
behavior, Bar (2007, 2009) proposed a unified theory that links the
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study of analogies, associations and predictions, which have previ-
ously been studied independently (e.g., Bar, 2003, 2004; Gentner,
1983; Holyoak and Thagard, 1997; Minsky, 1975; Schank, 1975).
The general idea of the proactive brain framework is that predictive
processes involve finding an analogy between an input (e.g., a sofa)
and a similar representation in memory (e.g., a general representa-
tion of similar sofas you saw before), which activates associated rep-
resentations (e.g., a coffee table, pillows) related to the particular
analogy. The co-activation of associated representations provides
specific, on-line predictions on what other instances may be of high
relevance in the particular context (see Fig. 1).

Since objects in the world rarely appear in isolation but rather ap-
pear in typical configurations with other objects that share the same
context, knowledge about associations among objects becomes highly
useful to understand what to expect in various situations. Objects can
be related to each other or to the environment in numerous ways: for
instance, a microwave and an oven are kitchen appliances; a cell
phone or a laptop may be carried by a businessperson in an office, a
train station, or a coffee shop. It has been proposed that stored mem-
ory representations of objects are clustered and linked depending on
the relatedness of the objects. These clusters of related representa-
tions can be referred to as ‘context frames’ (e.g., Bar, 2004; Bar and
Ullman, 1996; Barsalou, 1992; Friedman, 1979; Mandler and
Johnson, 1976; Palmer, 1975; Schank, 1975). In such representations
of context, certain elements are generally expected to appear (e.g., a
sofa and a TV set in a living room, or a ball and a hoop in basketball
game). Context frames can be formed from real-world experience
via implicit observations or explicit learning. For instance, implicit
learning can occur for covariance between shapes, syllables, tones,
or even more abstract, conceptual categories that appear in a predict-
able arrangement (Behrmann et al., 2005; Brady and Oliva, 2008;
Chun and Jiang, 1998; Fiser and Aslin, 2001; Saffran et al., 1996;
Saffran et al., 1999; Turk-Browne et al., 2005). In addition, meaningful
relations about objects, people, or events can also be learned explicit-
ly (e.g., a bottle is for holding water; Superman and Clark Kent are the
same person).

Associative processing is quickly triggered merely by looking at an
everyday object (e.g., a chair; Aminoff et al., 2007; Bar and Aminoff,
2003; Bar et al., 2007a), and such associative processing is critical
for visual recognition and prediction. The efficiency of predicting
the occurrence of an item depends on the consistency between bot-
tom–up sensory input and stored associative representations in
memory. When seeing a salient item in a picture (e.g., a football play-
er), associative processing may lead an observer to expect a particular
Fig. 1. A schematic depiction of prediction generation via analogies and associations, as
proposed in Bar (2007). An input (A′) activates an analogous representation in memo-
ry (A), which leads to the co-activation of associated representations (B, C, D) to gen-
erate predictions. The input may either be an external, sensory input, or an internally
generated thought. Moreover, the input can be of different degrees of complexity,
which may result in predictions that are of various levels of elaboration, encompassing
the range from perceptual to executive predictions.
Copyright © by Elsevier Ltd. Reproduced with permission.
context (e.g., a football field) and other objects in the scene (e.g., ban-
ners, cheering fans), as all these are predictable within the same con-
text frame. But if an unexpected item occurs in a given context
instead (e.g., a clergyman in a football field, see Fig. 2), recognition
of either the item or context becomes hindered, presumably because
the incongruent associations do not match our predictions or expec-
tations (Davenport, 2007; Davenport and Potter, 2004; Joubert et
al., 2007; Mack and Palmeri, 2010; Palmer, 1975; see also
Biederman et al., 1982). These findings suggest that context frames
are activated to generate predictions by seeing either a familiar object
or context (Bar and Ullman, 1996), and that observers are unable to
selectively attend to an item while ignoring the context (Davenport
and Potter, 2004; Joubert et al., 2007; see also Mack and Palmeri,
2010). Notably, the ultra-rapid detection for inconsistency between
objects and scenes suggests that associative predictions may be gen-
erated instinctively (e.g., for as brief as 26 ms of presentation time,
Joubert et al., 2007; Mack and Palmeri, 2010).

Predictions propagate from top–down mechanisms to influence
bottom–up processes. The information extracted from bottom–up in-
puts to support the top–down processes may be minimal, such that
the information can be analyzed and interpreted promptly. Bar
(2003, 2004) proposed that only limited sensory information is nec-
essary to trigger predictive processes (see Fig. 3A). Namely, partial in-
formation about objects in a visual context conveyed by low spatial
frequencies (LSF) is extracted and processed rapidly relative to fine
details carried by high spatial frequencies (HSF). The LSF information
is then matched to representations in memory that may be ‘averaged’
from similar instances previously encountered. The general represen-
tations of objects or scenes, or ‘gist’ (Oliva and Torralba, 2007;
Torralba and Oliva, 2003), reduce the number of possible identities
Fig. 2. Examples of inconsistent pairing of a salient item and a scene, used in Davenport
and Potter (2004). Top: A clergyman in a football field. Bottom: A football player in a
church.
Copyright © by American Psychological Society. Reproduced with permission.
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Fig. 3. A. The model for the top–down contextual facilitation of object recognition pro-
posed in Bar (2004). According to this model, low spatial frequencies (LSF) from an
input are extracted rapidly to activate an association set with possible interpretations
of a target object (e.g., the target object may be an umbrella or a lamp, but it is certainly
not a lighthouse or a dog). The later arrival of high spatial frequencies determines the
exact representation of the specific exemplar (e.g., the target object is indeed a beach
umbrella). For simplicity, only the relevant cortical connections and flow directions
of the proposed mechanisms are illustrated here. ITC, inferior temporal cortex; LSF,
low spatial frequencies; PFC, prefrontal cortex; PHC, parahippocampal cortex, V2 and
V4, early visual areas. ‘Lightening strike’ symbols represent activation of representa-
tions. B. Individual members of basic-level categories tend to look similar to each
other and look different from members in other categories (e.g., dog vs. cat). LSF rep-
resentations are often sufficient for distinguishing basic-level object categories.
Copyrights © Nature Publishing Group and MIT Press. Adapted with permission.

2 Note that not all types of visual training would enhance top–down processing due
to associations. For instance, perceptual learning studies often found task-specific im-
provement on visual discrimination for trained visual features or patterns (e.g., Zhang
et al., 2010; for reviews, see Gilbert and Sigman, 2007; Sagi, 2011; but see Wong et al.,
2011); contextual cueing studies showed implicit or explicit learning of specific con-
textual associations (e.g., Chun and Jiang, 1998; Brockmole and Henderson, 2006). In
contrast, the training effects for perceptual expertise can be generalized across unfa-
miliar exemplars and tasks (e.g., identity or location tasks; e.g., Gauthier et al., 2000a,
b; Wong et al., 2009a). More importantly, experts often acquire both visual and non-
visual object knowledge (e.g., Tanaka and Taylor, 1991), which we propose to play a
critical role in the activation and progression of associations to facilitate object
processing.
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for attended objects (e.g., umbrellas, lamps), and are often adequate
for matching objects at the basic-level for everyday recognition
(Rosch et al., 1976) since visual features of objects in the same
basic-level categories (e.g., dogs) are often similar to each other
(e.g., compared to cats, Fig. 3B). In sum, by linking the general im-
pression of a new input with the most similar representation in mem-
ory based on similarity, top–down mechanisms can quickly generate
predictions that facilitate bottom–up processes in object and context
recognition (Aminoff et al., 2008; Bar et al., 2006a; Kveraga et al.,
2007).

3. Associative processes in perceptual expertise

Observers appear to be able to generate associations and predic-
tions reliably and possibly automatically, and this ability is likely ac-
quired through extensive experience while interacting with the
world. Just howmuch our ability to produce helpful predictions is en-
hanced by experience and further training is an important open ques-
tion. Every person possesses some level of expertise in many
domains, but enthusiasts of various domains (e.g., birdwatchers,
chess players, musicians, stamp collectors) possess much broader
and deeper visual and non-visual knowledge that are associated
with items in their domains of expertise, compared with average peo-
ple or novices (e.g., Tanaka and Taylor, 1991). Here we synthesize ev-
idence from the existing literature that indicates that experts elicit
stronger associative processing due to enhanced visual and non-
visual knowledge and are faster and more accurate in making use of
analogies and generating predictions about their specific domains of
expertise. Note that associative or predictive processes can be ob-
served in most people. For instance, color information (e.g., yellow)
may be strongly associated with certain everyday objects (e.g., ba-
nana). Such color–shape associations can influence perception of
the actual color on the objects (Hasen et al., 2006; Witzel et al.,
2011). Nonetheless, a key question is whether such processes can
be enhanced through training. Our focus here is on expertise in visual
perception, although the influence of enhanced associative knowledge
on predictions is likely general to various areas of non-visual exper-
tise (e.g., athletes; see Ericsson and Lehmann, 1996; Ericsson and
Smith, 1991).

Not surprisingly, perceptual expertise2 leads to improvements over
novices in many visual perception or memory tasks. At a glance, ad-
vanced birdwatchers or car experts excel at identifying individual ob-
jects in their respective areas of expertise, regardless of whether the
task involves classification at the subordinate-level (e.g., ‘black-winged
snowfinch’ or ‘Honda Civic 2004’) or the basic-level (e.g., ‘bird’ or ‘car’)
(Mack et al., 2009; Tanaka, 2001; Tanaka and Taylor, 1991;Wong et al.,
2009a); grandmasters of chess have larger visual and memory capacity
for and greater search efficiency with meaningful chess configurations
compared with amateur or novice players (e.g., Brockmole et al.,
2008; Chase and Simon, 1973). In recent years, the majority of studies
on perceptual expertise have focused on the role of visual or shape
properties in expert recognition and memory (e.g., Gauthier and Tarr,
1997; Gauthier et al., 2000a,b, 2003; Grill-Spector et al., 2004; Harel
et al., 2010; Herzmann and Curran, 2011; Op de Beeck et al., 2006,
2008; Rhodes et al., 2004; Rossion et al., 2004; Rossion et al., 2007;
Scott et al., 2006, 2008; Wong et al., 2009a,b). We suggest that both vi-
sual and non-visual knowledge can play an important role in associative
processing. Here we will first describe the studies that have revealed
strong and rigid perceptual associations for objects that are devel-
oped during the acquisition of perceptual expertise. These findings
indicate that some aspects of perceptual expertise effects may re-
semble the object–context associative effect in studies on prediction
discussed above.

Rigid associative relations among different features and items can
be learned and expected as a result of expertise training. Since associ-
ations among features or items are particularly strongly established
in experts and are retrieved automatically (cf. Schneider and Shiffrin,
1977; Shiffrin and Schneider, 1977), experts may find it impossible to
ignore associated visual information, even when such information is
task-irrelevant. For instance, expert readers appear to automatically
extract contextual information (e.g., font, size) when reading text, such
that a sequence of letters presented in the same font are recognized
faster than in different fonts (e.g.,
Gauthier et al., 2006; Mayall et al., 1997; Sanocki, 1987, 1988). Such
contextual information may be completely irrelevant to the task at
hand (i.e., to identify letters and words rather than the fonts). Al-
though readers who are fluent in a language may take such contextu-
al regularity for granted, novice readers (e.g., non-Chinese readers
viewing Chinese characters) are not affected in the same manner
(Gauthier et al., 2006). Likewise, impoverished or incomplete visual
context may also be sufficient for experts to activate relevant associ-
ations to facilitate recognition. For instance, a briefly presented
(50 ms) prime word, which consists of letters and digits (e.g.,
M4T3R14L) or letters and symbols (e.g., MΔT€R1ΔL) that are similar

Unlabelled image


Fig. 4. Sample composite faces, made from combining different bottom halves with the
same top half, appear to be two completely different faces. It is difficult to selectively
attend to the top halves only and recognize that the top halves of the two composite
faces are identical, presumably because the strong associative nature of face processing
leads to ‘fusion’ of facial features within a face context, and to the expectation that
these faces are of different people (as from our extensive experience, different features
can only be found on different faces). The face halves were taken from the Max Planck
Institute face database.
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to an actual word (e.g., MATERIAL), facilitates recognition of a target
word almost as much as when the prime and target are identical
words (Perea et al., 2008), indicating powerful efficiency and expec-
tancy in expert visual word recognition and prediction.

Another example of rigid visual associative processing can be
found in face perception. Most adults are experts in face recognition.
Although all faces are homogeneous in their configuration and fea-
tures (i.e., all faces have two eyes, a nose and a mouth), we are able
to discriminate and identify faces at the subordinate level (e.g., Brad
Pitt) as quickly as at the basic level (e.g., male), indicating perceptual
expertise (Tanaka, 2001). A characteristic of face perception is holistic
processing, which reveals that all features in a face are processed as a
whole (e.g., Farah et al., 1998; Tanaka and Farah, 1993; Young et al.,
1987). Since facial features always co-occur and co-vary in a mean-
ingful way (e.g., Brad Pitt's eyes always appear with his nose and
mouth), it appears natural that strong associations among facial fea-
tures are developed and strengthened for face recognition expertise.
For instance, seeing a big smile on someone's face leads to the predic-
tion or expectation of seeing dimples or scrunched eyes on the same
face. In other words, it is almost impossible to selectively process
one feature of a face without taking in other associated facial informa-
tion. This inability for selective attention has been shown in the com-
posite paradigm (see Fig. 4, Cheung et al., 2008; Farah et al., 1998;
Hole, 1994; Richler et al., 2011; Young et al., 1987), where the top
half of a face (e.g., Brad Pitt) is combined with the bottom half of an-
other face (e.g., Matt Damon) to form a composite. Observers have
great difficulty in identifying the target half of the composite (e.g.,
top) while ignoring the task-irrelevant half (e.g., bottom), because
the representations of the facial features ‘fuse’ together within a
face context.

This holistic effect arises from rigid associative processing of fea-
tures and happens at a glance (≤50 ms presentation time, Richler et
al., 2009). Intriguingly, the holistic effect strikingly resembles the ob-
ject–scene consistency effect (e.g., Davenport and Potter, 2004, cf.
Figs. 2 and 4), indicating failures of selective attention to a subset of
information in a context. Note that the holistic effect appears to be
experience-based and is associated with specific computations (e.g.,
subordinate-level recognition) with objects in a homogeneous
category (e.g., faces, cars, birds), as the holistic effect is reduced for
objects with which we have less experience (e.g., faces from an
unfamiliar race; Michel et al., 2006; Tanaka et al., 2004). Furthermore,
holistic processing is not unique for faces, and has also been observed
in experts of non-face categories such as cars (Bukach et al., 2010;
Gauthier and Tarr, 2002), novel objects (Gauthier et al., 2003; Wong
et al., 2009a), English words (Wong et al., 2011), musical notations
(Wong and Gauthier, 2010a), fingerprints (Busey and Vanderkolk,
2005) and chess game boards (Boggan et al., in press). This raises
the possibility that the object–context association effect (e.g.,
Davenport and Potter, 2004) can also be strengthened by additional
yet specific practice.

4. Neuralmechanisms for visual prediction andperceptual expertise

Although associative processing appears critical in both visual pre-
diction and perceptual expertise, past studies from these two lines of
research have asked distinct sets of questions. For instance, most
studies in visual prediction are concerned with recognition of every-
day objects and scenes, while most perceptual expertise research
has emphasized rapid subordinate-level processing of objects in
only one or a few categories. Investigation of the underlying neural
mechanisms for these processes has also revealed different empha-
ses: associative prediction research has focused on a large-scale
brain network that coordinate top–down processes, whereas percep-
tual expertise studies have mainly concentrated on local regions in
the ventral visual stream. Here we describe the main findings on
the neural correlates of predictive and expert processing separately,
and highlight the possible overlaps between them that likely merit
further attention from both fields.

Recent studies using human functional neuroimaging have
revealed a cortical network that mediates context-based associative
predictions, which includes structures in three main regions: the me-
dial temporal lobe (MTL), the medial parietal cortex (MPC) and the
medial prefrontal cortex (MPFC). Note that this network largely over-
laps with the ‘default mode’ network, which is active when observers
are not engaged in goal-directed behavior (Raichle et al., 2001;
Buckner et al., 2008). This overlap implies that the associative proces-
sing comprises a large part of the functions mediated by the brain's
default mode (Bar et al., 2007b; see Fig. 5). The associative prediction
network has been defined by contrasting everyday objects that are
strongly associated with a specific context (e.g., a beach ball) with ob-
jects that are weakly tied to any specific context (e.g., a camera)
(Aminoff et al., 2007, 2008; Bar and Aminoff, 2003; Bar, 2004). Robust
context association effects are observed in the parahippocampal cor-
tex (PHC) in the MTL and the retrosplenial complex (RSC) in the MPC.
The PHC and RSC have previously been thought to be engaged in place
processing (e.g., Aguirre et al., 1996; Epstein and Kanwisher, 1998) and
in episodic and autobiographical memory (e.g., Ranganath et al., 2004;
Svoboda et al., 2006; Wagner et al., 1998), which may be reasonable
due to the associative nature of these processes (e.g., Bar and Aminoff,
2003; Bar et al., 2008). While MTL, MPC, and MPFC may be involved
for different kinds of associations, additional research is required to dis-
tinguish these relations. It is possible that the MTL is responsible for
simple or unique associations (e.g., Schacter, 1987; Eichenbaum,
2000; Ranganath et al., 2004). Specifically, the PHC appears to represent
stimulus-specific context and associations, which are sensitive to spe-
cific appearance (e.g., my office, Aminoff et al., 2008). In contrast, the
RSC in theMPC represents prototypical, generic information about asso-
ciative context frames (e.g., an office, Aminoff et al., 2008). The repre-
sentations and processes from PHC and RSC presumably interact with
and provide the basis for the predictive processes in the MPFC, while
the MPFC may be involved for processing of deliberative or conditional
associations (Bar et al., 2007b). In particular, the orbitofrontal cortex
(OFC), which is a multimodal association region in the MPFC (Barbas,
2000; Kringelbach and Rolls, 2004) that receives fast projection of visual
input via the magnocellular pathway (Kveraga et al., 2007), may be-
come increasingly important in generating top–down influences to pre-
dict possible object identities when the visual input is relatively coarse
(Bar et al., 2006a). These different kinds of top–downprocesses then fa-
cilitate modality-specific cortex such as the fusiform gyrus for object
recognition (Bar et al., 2006a; Kveraga et al., 2011).

Instead of examining large-scale cortical networks, many neuro-
imaging studies on perceptual expertise have instead focused on
local regions in the ventral visual pathway, such as in the face-,
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Fig. 5. Different emphases in the investigation of neural mechanisms for associative prediction vs. perceptual expertise. A: Medial view of the typical contextual association network
(e.g., Bar and Aminoff, 2003) and its overlap with the default network (e.g., Raichle et al., 2001). The context network activations are obtained from the contrast between strongly
contextually associative objects (e.g., a tennis racket) and weakly contextually associative objects (e.g., a jacket). The default network regions are those that are more active during
fixation rest than during task performance. MPC, medial parietal cortex. MTL, middle temporal lobe. MPFC, medial prefrontal cortex. B: An axial oblique slice through the right ‘fu-
siform face area’ (FFA, marked with a red circle), one of the local regions emphasized in several perceptual expertise studies (for subordinate-level expertise, e.g., Gauthier et al.,
1999, 2000a,b; Wong et al., 2009b), for a car expert and a bird expert. The FFA was first defined by more robust activations for faces than objects. In Gauthier et al. (2000a), this area
was found to be more activated for car experts when viewing cars compared to other objects, and for bird experts when viewing birds compared to other objects.
Copyrights © by Elsevier Ltd. and Nature America Inc. respectively. Adapted with permission.
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word- or letter-selective regions (e.g., face-selective: Kanwisher et al.,
1997; McCarthy et al., 1997; word-selective: Baker et al., 2007; Cohen
et al., 2000; letter-selective: Gauthier et al., 2000b; James et al., 2005).
Various types of perceptual expertise (e.g., with faces, words, letters,
or non-face objects) differentially alter neural representations in
these perceptual regions (e.g., Gauthier et al., 1999; Gauthier et al.,
2000a; James et al., 2005; Xu, 2005; Wong et al., 2009b). For instance,
the word- and letter-selective areas are found to be selective to ex-
pert processing of printed words or letters in various languages
(e.g., Roman letters, Chinese characters, Hebrew words; Baker et al.,
2007; James et al., 2005;Wong et al., 2009c). In spite of the drastically
different linguistic and visual properties in these writing systems,
comparable expert training in reading appears to be critical in recruit-
ing these areas. Likewise, the ‘fusiform face area’ (FFA) was originally
proposed to be selective for faces (Kanwisher et al., 1997), which are
processed holistically (i.e., facial features are associated in a face con-
text; Farah et al., 1998; Tanaka and Farah, 1993; Young et al., 1987).
As mentioned above, experts of non-face objects (e.g., cars, chess
game boards) also exhibit enhanced holistic processing (e.g., Bukach
et al., 2010; Boggan et al., in press). The increase in holistic processing
is found to be correlated with higher activity in the FFA, suggesting
the possibility that the FFA can be modulated by perceptual expertise
with cars, birds (Gauthier et al., 2000a), chess game boards (Bilalić et
al., 2011; see also Krawczyk et al., 2011), or novel 3D objects
(Gauthier and Tarr, 2002; Wong et al., 2009b).

Since experts also possess superior non-visual associative knowl-
edge about objects of expertise (e.g., the habitat of a warbler or that
of a belted kingfisher, and what sounds they make), it is conceivable

image of Fig.�5


161O.S. Cheung, M. Bar / International Journal of Psychophysiology 83 (2012) 156–163
that enhanced activity should also be observed in the context associa-
tive regions. Interestingly, several studies indeed reported enhanced
neural activity for objects of expertise in the lateral PHC for expert
birdwatchers (Gauthier et al., 2000a), car experts (Gauthier et al.,
2000a; Harel et al., 2010) and advanced chess players (Campitelli et
al., 2007; see also Amidzic et al., 2001). Although it is possible that
the enhanced PHC activity in chess experts is related to the spatial
processing of the position of chess pieces on a chessboard, it is unlike-
ly that the similar effect in bird and car experts can be explained by
spatial processing, supporting the notion that the best characteriza-
tion of the role of the PHC is related to associations in general rather
than space in particular (Bar et al., 2008). Indeed, this may instead be
a neural indicator of associative processing in experts across domains.

5. Proposed associative prediction framework in experts

In the current framework of associative prediction (e.g., Bar, 2003,
2004), the PHC, RSC and OFC influence processing in the perceptual
system to guide object recognition (Bar et al., 2006a; Kveraga et al.,
2011). Additionally, perceptual and semantic associations are
strengthened with expertise (Gauthier et al., 2003; Tanaka and
Taylor, 1991; Herzmann and Curran, 2011). Critically, how does the
associative prediction network interact with the perceptual system in
experts? Let's take face expertise as an example to demonstrate the
potential interactions between perceptual and predictive processes
that are generated by perception of an object of expertise. When seeing
a famous face (e.g., Barack Obama), all features of the face are processed
holistically and the visual representation may instantly activate
associated visual or non-visual details about the person (e.g., he lives
in the White House; he was a Senator for Illinois). These associations
can lead to predictions about what items or people may be around
him (e.g., Michelle Obama or Joe Biden). Indeed, famous faces not
only activate the FFA, a perceptual locus for faces (Grill-Spector et al.,
2004; Kanwisher et al., 1997; Ishai et al., 1999), but also the PHC, a
key area of the associative network (Bar et al., 2007a; Leveroni et al.,
2000; Pourtois et al., 2005; Sergent et al., 1992; Trautner et al., 2004).3

Conversely, when meeting a new friend, all visual features of the face
are also likely processed holistically. While this representation may
not be linked to specific visual or non-visual details associated with
that person, you likely generate associations related to the face immedi-
ately (e.g., he looks like a friend fromhigh school) andmake predictions
about different attributes of the person (e.g., whether he is friendly or
aggressive; what kind of job he may have) based on similarity of the
person to ‘prototypes’ or general representations of many other people
you already know (Ambady et al., 2000; Bar et al., 2006b; Bar et al.,
2007a; Willis and Todorov, 2006). We suggest that these processes
are supported by the interactions between the context associative net-
work and the perceptual system, andmay be triggered by various kinds
of perceptual cues (e.g., biologicalmotion, Kramer et al., 2010). It is like-
ly that these interactive processes are not only found with face or per-
son perception but with perceptual expertise for other object
categories. However, further empirical work is necessary to understand
how exactly these interactions operate.

The result and purpose of associative predictions may be to
activate other brain areas to be readily engaged in anticipation for
what is coming. To reiterate, experts' superior visual and non-visual
knowledge would be beneficial in generating such predictions. For
instance, with a glance at a single, visually presented musical nota-
tion, a multimodal brain network (including the motor cortex, audi-
tory cortex) is activated in proficient music readers, indicating the
rich representations related to music reading and performance
3 Moreover, attractive faces preferentially activate the OFC, which may be related to
associative processing and reward or esthetic assessment (Aharon et al., 2001; Ishai,
2007; O'Doherty et al., 2003).
(Wong and Gauthier, 2010b). More importantly, experts do not only
have more resources for generating predictions and planning for
appropriate actions, but are also likely to make more accurate and
elaborated predictions in a given context. For example, chess grand-
masters make better moves than amateur chess players because
they can ‘think ahead’ further (Charness, 1981; Holding, 1992).
Specifically, strong players are more accurate in predicting the end-
point positions of the pieces than weaker players (Holding, 1989).
Therefore, strong associations in long-term memory that are formed
during the acquisition of expertise in a domain may lead to increased
strength, depth and specificity of predictions.
5.1. Future directions

Apart from the potential links between visual prediction and per-
ceptual expertise discussed above, many questions remain to be fur-
ther explored. For instance, what are the critical elements that make
efficient training for different object categories to promote top–
down associative processing? As mentioned earlier, it is important
to distinguish the nature of the visual training tasks, as not all training
requirements would lead to top–down effects that are generalizable
across tasks and across exemplars within an object category.
Moreover, since various object categories (e.g., faces and letters)
require different computational demands from the visual system,
do the different categories recruit identical top–down associative
mechanisms, or are there possible different sub-systems support-
ing associative processing?

Moreover, is there a qualitative or quantitative difference between
the ability to predict between experts and novices? Important ques-
tions to address include what the differences are in the time course
and mechanisms for accessing visual and non-visual associations
between experts and novices, and whether there are any differences
in the neural representations that support associations, depending
on the degree of expertise. Currently, it remains unknown whether
the visual and semantic associations are primarily stored in the con-
text associative network for experts, or the associations may also be
represented in the visual system as perceptual expertise strengthens
visual performance.

It is also interesting to ask whether experts are more adaptive or
inflexible when facing inconsistent or unpredictable situations.
Some theoretical accounts on the flexibility of expertise skills (e.g.,
Ericsson and Lehmann, 1996) have suggested that experts automati-
cally retrieve reasoning or associations linked to particular tasks or
stimuli and thus cannot ignore such rigid associations even when
the associations are not optimal for the task at hand. In contrast,
experts might also have access to more probable associations and
analogies that may contribute to more flexible and creative processing.

To answer these questions, future investigation of expertise
should broaden the window of examination to include the behavioral
and neural mechanisms of associative prediction in experts and
novices in various domains. In sum, while most people are proficient
in the skill of everyday recognition and prediction, little work in
cognitive neuroscience has been done to understand the acquisition
and development of this skill and how it may interact with expertise
training in the perceptual system. We suggest that studying visual
prediction jointly with perceptual expertise will provide a more com-
plete picture of visual cognition.
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